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This research utilizes the Sloan Digital Sky Survey (SDSS) dataset, examining 12,884 

observations to explore quasars, stars, and white dwarf objects. Magnitude data 

and coordinates across five filter bands are analyzed, revealing unique features 

through statistical methods. The identification of 77,429 quasars with 15 

dimensions enhances the dataset. Thorough analyses of stellar and white dwarf 

classes, coupled with visualization techniques, unveil variable relationships. 

Residual validation and Gaussian kernel density plots confirm significant class 

differences. Non-linear regression and a normal distribution mixture model depict 

complex variable relationships. A parallel coordinates plot aids in interpreting data 

patterns, while predictive modeling via regression exposes meaningful coefficients. 

Logistic regression effectively classifies astronomical objects in the SDSS training 

data. This research contributes to understanding celestial object characteristics, 

offering valuable insights for astronomers and astrophysicists in analyzing large-

scale astronomical datasets. 
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Introduction 

The exploration of the cosmos has undergone a profound evolution, driven by the 

emergence of sophisticated observational methods that yield vast datasets, forming the 

cornerstone of astronomical inquiry.1 In this pursuit, our study delves into the depths of the 

Sloan Digital Sky Survey (SDSS) dataset, a repository housing 12,884 observations teeming with 

celestial wonders. Within this digital vault lie crucial insights awaiting revelation, spanning the 

realms of quasars, stars, and white dwarfs2. With magnitude data across five filter bands and 

precise coordinates, the SDSS dataset presents a formidable platform for meticulous statistical 

analysis3,4. Navigating its intricacies demands a thorough examination of magnitude and 

coordinate distributions, a task our research undertakes with precision5. 

Employing a dual methodology, we harness statistical analyses and visual techniques to 

unearth nuanced insights6. Guided by a tripartite classification scheme, we scrutinize Quasi 
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Stellar Objects (QSOs), Main Sequence Stars + Red Giants (MS + RG), and White Dwarfs (WD), 

crafting distinct datasets for each celestial class. Calculations of brightness differences and the 

application of advanced models drive our pursuit to comprehend the physical essence of these 

cosmic entities 7. 

Our research holds paramount significance in its capacity to unveil patterns and trends 

within the SDSS dataset, offering invaluable insights into the multifaceted nature of 

astronomical objects. Setting itself apart from antecedent studies, our work integrates rigorous 

statistical modeling with advanced visualizations, introducing a groundbreaking dimension 

with the application of a normal distribution mixture model8. Further enhancing our 

understanding, we deploy formidable tools such as the Lasso model and logistic regression to 

predict and classify celestial object classes, providing a holistic perspective on the SDSS dataset9. 

While our focus remains deliberate on quasars, stars, and white dwarfs, we conscientiously 

acknowledge limitations and potential biases within the dataset. Despite its specificity, our 

findings hold intrinsic value within the defined scope of our study. Beyond descriptive 

statistics, our research offers a comprehensive lens through which to comprehend celestial 

objects, promising improved classification models and heightened predictive capabilities. 

As astronomers navigate the celestial tapestry, our study serves as a beacon, illuminating 

pathways toward a deeper understanding of the cosmos and its enigmatic inhabitants. 

Methodology 

A Data Analysis Methodology for Sloan Digital Sky Survey (SDSS) Astronomical Data on Quasars, 

Main Sequence Stars and Red Giants, and White Dwarfs 

This research employs a comprehensive approach to analyze astronomical data from the 

Sloan Digital Sky Survey (SDSS) dataset, focusing on quasars, main sequence stars, red giants, 

and white dwarfs 10. The study began with data collection from 12,884 SDSS observations, 

including magnitudes (u, g, r, i, z) and coordinates (alpha-ray, delta). Summary statistics 

determined minimum, maximum, and mean values, identifying specific variable ranges 11. 

Visualization through variable pairs' plots followed. Special analyses were conducted for 

quasars (77,429 objects) and stars (5000). Quasar analysis explored magnitude, redshift, and 

uncertainty measures, while stellar analysis used descriptive statistics. Data processing 

included extracting QSO, MS+RG, and WD data, cleaning external files, and calculating 

brightness differences between photometry bands 12. The combined data frames culminated in 

scatter plots, enhancing the visualization of brightness differences and object classes. 

Residual Validation through Q-Q Plot Visualization Algorithm 

The research methodology included validating the normal distribution of residuals 

through MANOVA analysis and Q-Q plot visualization 13. The Q-Q plots, with a dashed red 

line indicating expected normal distribution, were examined for each variable 14. Consistent 

alignment with the line suggested normality, reinforcing MANOVA results. Cases with 

significant MANOVA differences but Q-Q plot conformity added confidence 15. The inference 

is that Q-Q plots support the notion of relatively normal residual distribution for variables 
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(variable 1 to variable 4), strengthening the reliability of MANOVA results and emphasizing 

significant class differences. 

A Combined Visual and Statistical Analysis Using Gaussian Kernel Density Plots and Normal 

Distribution Mixture Models 

Data were imported into the R programming environment and organized in the 

_sdss data  data frame. Variables were calculated based on magnitude differences at u, g, r, i, 

and z wavelengths. Data processing includes calculating the magnitude difference between 

various wavelengths. The results are stored in a data frame to represent the physical 

characteristics of astronomical objects. Data distribution analysis is performed with Gaussian 

kernel density plots using the for loop 16. These plots are grouped in rows and columns to 

compare the kernel density distribution of magnitudes at specific wavelengths 17. We applied 

non-linear regression analysis with the Plot Normal Mix function. This function models the non-

linear relationship between variables by displaying the two components of a mixed normal 

distribution model 18. The graph shows the data density curve and the mixed normal 

distribution model. Statistical approaches are used to calculate parameters such as lambda, mu, 

and sigma, providing information about the relative weights, means, and standard deviations 

of each component of the normal distribution 19. Graphs of the model results provide a visual 

representation of the fit to the actual data distribution 20. The iterative process involves multiple 

iterations on the model. The research findings emphasize the use of the Plot Normal Mix 

function to identify the normal distribution and the possible presence of mixed normal 

components in the data, demonstrating a holistic approach that combines visualization and 

statistical modeling 21. 

Analysis of Attributes in the SDSS Dataset using Parallel Coordinates Plot Method 

The process began by downloading and importing the dataset into the R environment. 

After the import was completed, we printed the dimensions of the dataset to provide an 

overview of its size. Subsequently, we created a new dataset, "new_dataset," by calculating the 

differences between specific columns of the original SDSS dataset. These differences reflect 

variations in relevant attributes for the study. 

We employed a package to create a Parallel Coordinates Plot, where the x and y axes 

represent the differences between the previously calculated columns 22. The line colors indicate 

class factors, while line grouping is done based on another factor. The plot's aesthetics are 

configured through a theme function, and axis labels as well as the plot title are added using 

specific functions. The physical interpretation of the plot involves analyzing the differences in 

attributes within the dataset. This plot provides a visual representation of the impact of these 

differences on the classification of data based on their classes. Researchers can use this plot to 

identify patterns or trends in the data, support the interpretation of research findings, and 

understand the physical consequences or significance of these differences. 

Sky Object Class Prediction Analysis 

This research collects sky data and applies a third-degree non-linear polynomial regression 

model for analysis 23. The model coefficients, including the intercept, and their significance are 
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evaluated, along with the residual distribution and other evaluation metrics 24. The model's 

significance is verified using F-statistics, p-values, and visualized. The Lasso model is employed 

to represent the data, with coefficient interpretation and model complexity 25. The impact of 

features on classification is assessed using GCV, RSS, GRSq, and RSq 26. A logistic regression 

model is formulated, significant features identified, and their effects interpreted 27. Model 

evaluation is conducted using GCV, RSS, GRSq, and RSq, along with a Coefficient Plot for better 

understanding 28. Results and interpretations from both models are discussed, emphasizing the 

significance of features in predicting sky object classes 29. Accuracy and effectiveness of the 

logistic regression model are highlighted, with visualizations, including the Coefficient Plot, for 

understanding the statistical model. The research concludes with a summary, emphasizing the 

model's effectiveness and the implications of findings for predicting sky object classes, while 

suggesting potential avenues for future research. 

Results and Discussion 

Characteristics of Quasars, Stars, and White Dwarf Objects 

In this study, we conducted a comprehensive analysis using the SDSS dataset, comprising 

12,884 observations, to unveil significant characteristics. The dataset encompasses 12,884 data 

rows and 7 columns, featuring magnitude data across five filter bands (u, g, r, i, z), as well as 

alpha-ray (ra) and delta (dec) coordinates. Through summary statistical analysis, we 

determined that the magnitudes in each filter band ranged from 15:00 to 21:00. Additionally, 

the alpha-ray coordinates (ra) exhibited a minimum value of 180.0 and a maximum of 185.0, 

while the delta coordinates (dec) ranged from 20.00 to 25.00. 

The findings are visually represented through several plots, elucidating the relationships 

between pairs of variables. The first graph illustrates the connection between u-g (magnitude) 

and g-r (magnitude) differences, while the second graph depicts the relationship between g-r 

(magnitude) and r-i (magnitude) differences. The third graph focuses on the association 

between r-i (magnitude) and i-z (magnitude) differences. These visualizations contribute to a 

deeper understanding of the distribution of magnitudes and coordinates of astronomical objects 

within the SDSS dataset. 
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Figure 1. Galaxy Color Relationships in SDSS Color Space Phase Diagrams 

The results show that the analyzed dataset consists of 77,429 quasar objects (qso1), each of 

which is characterized by 15 different dimensions. The variables include magnitude, redshift, 

and uncertainty measures. Statistical analysis revealed a distribution of the data, including 

redshifts with a range from 0.0780 to 5.4135 and a mean of 1.5375. The umag filter has values 

ranging from 0.00 to 26.79, with a median of 19.58. Special variables such as FIRST and ROSAT 

have a unique range of values (-1.00 and -9.000), indicating the distinctive nature of the observed 

quasar objects. This dataset has 77,429 rows and 15 columns, showing its complexity. In 

addition, there is the qso_train dataset with 2000 rows and 5 columns. The descriptive statistical 

analysis of qsotrain includes the variables ug, gr, ri, iz, and Class. For example, ug has a minimum 

value of -0.7380, a maximum of 5.3580, and a mean of 0.4281. The quartile distribution shows 

variability, such as the first quartile at 0.1270, the median at 0.2610, and the third quartile at 

0.4520. 

These results are based on 5000 stellar observations from the Sloan Digital Sky Survey 

(SDSS) catalog, which analyzes the magnitudes and positions of stars. The study used data from 

SDSS_wd.csv (10,090 observations, 8 variables), involving SpClass, umag, gmag, rmag, imag, zmag, RA, 

and Declination. We used astronomical physics data from three classes: QSOs, MS+RG, and 

WD. The data extraction and cleaning process involved removing rows with invalid photometry 

values. Processing the QSO data involved calculating the brightness differences between 

photometry bands, resulting in clean qso_train data frames. A similar procedure was applied to 

the stellar (star_train) and white dwarf (wd_train) data. These three data frames were combined 

into SDSS_train, which presents the brightness and object class differences. The study 

proceeded with visualization, using the three scatter diagrams in Figure 2 to illustrate the 

relationship between photometric parameters. The dots are colored by object class (QSO, 

MS+RG, WD), allowing researchers to understand the data distribution and interaction of 

photometric parameters for each class. 
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Figure 2. Relationship of Magnetism in Quasar Objects (QSO), Red Giant Stars (MS + RG), and 

White Dwarfs (WD) 

Residual Validation through Q-Q Plot Visualization of Residual Normality Distribution Assumption 

The study effectively examined the variability among classes concerning the observed 

variables. Utilizing MANOVA analysis, data collected from observations on four variables 

,  ,  ,  and 
g r i z

u g r i  were analyzed. The Residuals and Values visualization data, with degrees of 

freedom being 1 for the class variable and 8998 for the residuals, indicate significant differences. 

The standard errors of the residuals for each variable were 0.7812477, 0.4002735, 0.2256753, and 

0.1928413, respectively: 
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The research findings effectively utilize Q-Q plot images to visually represent the residual 

distribution of variables ,  ,  ,  and 
g r i z

u g r i based on MANOVA analysis. These plots serve the 

purpose of assessing how closely the residual distribution aligns with a normal distribution. 

Each Q-Q plot features a dashed red line representing the expected normal distribution, and the 

analysis concludes that, for each variable ,  ,  ,  and 
g r i z

u g r i , the residual distribution tends to 

approximate a normal distribution. The alignment of points in the Q-Q plots with the dashed 

red line indicates the fulfillment of the normality distribution assumption for the residuals. 
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Figure 3. Validation of MANOVA Results through Q-Q Plot Analysis 

The findings from the MANOVA analysis revealed significant differences between the 

classes. To ensure the robustness of these results, a Q-Q plot visualization was conducted, 

demonstrating that the residual distribution for each variable is relatively normal. This visual 

confirmation adds credibility to the validity of the analysis, suggesting that the observed 

variations in the variables ,  ,  ,  and 
g r i z

u g r i  are unlikely to stem from a violation of the 

assumption of normality in residual distribution. Consequently, it can be inferred that the 

significant differences highlighted by the MANOVA analysis are sufficiently reliable and not 

influenced by irregularities in the residual normality distribution. 

Distribution Analysis of Magnitude Difference 

In this research, we conducted an effective and high-quality investigation utilizing data 

sourced from the Sloan Digital Sky Survey (SDSS). The data was imported into the R 

programming environment using the .read csv  function and organized into a structured data 

frame named _SDSS test . The variables within this data frame were derived from the 

magnitude differences across u, g, r, i, and z light wavelengths. The data processing phase 

involved the calculation of magnitude differences for u and g g
u , g and r 

r
g , r and i 

i
r , and i 

and z 
z

i , representing the physical characteristics of observed astronomical objects. 

To explore the distribution of the data, our study adopted a graphical visualization 

approach. In the implemented code, a Gaussian kernel density plot was generated for each 

variable ( ), ,
g r i

u g r  using a for loop. The utilization of a one-row and three-column layout 

=( ( (1,3)))par mfrow c  allowed for a comprehensive comparison and analysis of the kernel 

density distribution of different magnitudes at a specific wavelength. This methodological 

approach enhances the depth of our investigation into the astronomical data and contributes to 

the overall effectiveness and quality of our research. 
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Figure 4. Gaussian Kernel Density Visualization of Magnitude Differences at Specific Wavelengths 

The effective and high-quality results of our research are achieved through a 

comprehensive analysis of SDSS data using graphical visualization techniques. This approach 

offers valuable insights into the distribution of magnitude differences among astronomical 

objects. The interpretation of these visualizations enhances our comprehension of the physical 

characteristics inherent in the observed objects. The presented graphs not only demonstrate a 

profound understanding of data distribution but also highlight trends in magnitude differences 

across various wavelength combinations. Leveraging kernel density graph analysis allows for 

the identification of distribution patterns, providing a pathway to extract valuable insights into 

the physical properties of astronomical objects surveyed by SDSS. Our study's findings 

specifically delve into the interpretation of physical aspects captured in images, with a focused 

exploration of magnitude differences distribution at specific wavelengths. This nuanced 

analysis contributes to a deeper understanding of the intrinsic physical traits exhibited by 

astronomical objects within the SDSS dataset. 

 
Figure 5. Statistical Approach to Non-linear Regression Analysis 

In this research, the investigators successfully enhanced the comprehension of the 

_SDSS test  dataset by employing a computer program proficient in generating insightful 

graphical visualizations. The visualization process involved the systematic application of the 

plot and lines methods in iterative loops, yielding visual representations illustrating the 

interrelationship between two variables at positions i  and + 1i  within the dataset. The resultant 

graphs strongly suggest the potential for non-linear regression analysis between these variables. 
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The significance of this study lies in its incorporation of not only visual analysis but also a 

meticulous statistical approach. 

Utilizing the .loess smooth  function on the red line in each graph exemplifies an effort to 

model the non-linear relationship between variables by employing a smoothing process to 

discern the general trend of the data. Notably, the investigation unveiled noteworthy insights 

pertaining to the function , designed for calculating a normal mixture model of data with 

_n components . This discovery underscores that the research methodology extended beyond 

visual analysis, encompassing a statistical approach in the form of modeling to discern the 

normal distribution and potential presence of mixed normal components in the data. In essence, 

this research showcases a comprehensive approach that harmoniously merges the strengths of 

visualization and statistical modeling, providing a profound understanding of variable 

relationships within the _SDSS test  dataset. 

 

 
Figure 6. Visualizing Distribution Patterns in Multi-Group Data Using Normal Distribution Mixture 

Modeling 

In this study, we employed the `plot_normal_mix` function to visually represent the 

outcomes of a normal distribution mixture model. The function generated a graphical 

representation illustrating the amalgamation of two components within the normal 

distribution. The observed data's density curve is represented by the black line, while the 

resulting normal distribution mixture model is depicted by the red line. The primary objective 

of this research is to employ the normal distribution mixture model as a tool for modeling the 

distribution of the observed data. Each component within the model corresponds to the 

contribution of distinct groups or classes within the data. The model is specifically crafted to 

discern distribution patterns within data consisting of multiple groups. Key parameters, 

including lambda, mu, and sigma, offer insights into the relative weight, mean, and standard 

deviation of each normal distribution component. The graphical outputs generated by the 

model visually demonstrate the degree to which the normal distribution mixture model aligns 

with the actual data distribution. The obtained results reveal that the model underwent multiple 

iterations, as indicated by the specified number of iterations, and these outcomes were utilized 
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to generate visualizations for each of the three variables involved, as the iteration was 

performed for i ranging from 1 to 3.  

Analysis of Attribute Differences in SDSS Datasets Using Parallel Coordinates Plot Visualization 

In this research, we conducted a comprehensive analysis using the SDSS dataset, leveraging 

the robust capabilities of the R environment. The dataset was acquired and seamlessly 

integrated into R through the utilization of the _read csv  function from the designated package. 

To provide a comprehensive understanding of the dataset, we printed its dimensions, offering 

insights into the magnitude of the data under examination. 

Following the dataset importation, we engineered a new dataset, _SDSS test , by 

systematically calculating the disparities between specific columns within the original SDSS 

dataset. These calculated differences elucidate variations in attributes deemed pertinent within 

the dataset. To visually represent these discrepancies, we employed the 2ggplot  package to 

generate a Parallel Coordinates Plot. The plot utilized the plot function, with the x and y axes 

depicting the dissimilarities between the previously computed columns g
u  and 

r
g . The 

coloration of the lines in the plot corresponded to the class factor ( )Class , with line grouping 

facilitated by the _geom line  function. Aesthetic aspects were meticulously managed through 

the _theme minimal  function, and axis labels and plot titles were incorporated using the .labs   

function, ensuring a visually compelling and informative representation of the dataset 

disparities. 

 
Figure 7. A Visual Analysis Using Parallel Coordinates Plot and SDSS Data 

 

The physics interpretation of this figure involves analyzing the differences between the 

measured attributes in the dataset. This plot provides a visual representation of how these 

differences affect the classification or categorization of the data based on its class. Through the 

use of this plot, researchers can identify patterns or trends in the data that may have significant 

physical consequences or meaning. As such, it is an effective tool in the understanding and 

interpretation of data to support research findings. 
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Predictive Modeling of Celestial Objects 

The research findings demonstrate that employing a non-linear model with a polynomial 

degree of 3 to predict classes based on variables , ,   ,  and
g r i z

u g r i  yields statistically significant 

coefficients. The intercept, initially valued at approximately 1.617 with a standard error of 

around 0.01450, and the coefficients for each degree polynomial exhibit significant effects on 

class prediction. Notably, specific combinations such as 1.0.0.0, 2.0.0.  0,  and 3.0.0.0  for 

polynomials , ,   ,  and
g r i z

u g r i with a degree of 3 show significant values, supported by high t-

values and exceptionally low p-values. 

The residuals of the model display a normal distribution ranging from -2.07226 to 2.38046. 

Further assessment of coefficient values, including a Residual standard error of approximately 

0.3737 and a Multiple R-squared of about 0.6869, suggests that the model effectively explains 

variations in the training data. The high F-statistic (578.5) and a p-value −  16( 2.2 10 )  

underscore the overall significance of the model in predicting classes. 

These findings affirm the suitability of a non-linear model with a polynomial degree of 3 

for predicting classes based on , ,   ,  and
g r i z

u g r i  variables within the training dataset. The 

study's results offer a comprehensive view of the nonlinear regression model, visually 

represented in two figures. The first figure illustrates coefficients, with each point denoting the 

impact of a variable on the response variable (Class). The 95% confidence intervals, indicated 

by error bars, highlight the significance of coefficients, identifying them as significant when 

intervals exclude zero values. 

The second figure showcases the residual distribution, emphasizing the symmetrical and 

normally distributed nature of residuals, affirming the suitability of the nonlinear regression 

model for data representation. Additionally, the figure compares predicted values against true 

values, with the alignment of points around the red dashed line indicating the model's overall 

accuracy in predictions. 

The results of the study using the Lasso model provide valuable information that can be 

interpreted. The results show that the nonlinear regression model and the Lasso model provide 

a good representation of the data with relevant interpretations of the coefficients and model 

complexity. The key findings are as follows: 
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Figure 9.  Interpretation of Nonlinear Regression and Lasso Model Results in Capturing Data 

Complexity 

 

In this study, the analysis used statistical models to classify the classes of astronomical 

objects in the SDSS training data. The logistic regression method was used, and the model was 

formulated as ( ) .Class with a model intercept of 1.7591342. Some features that were significant 

in the classification included , ,   ,  and
g r i z

u g r i . The analysis results show that the 
g

u  feature has 

a significant impact with a value of -0.101, causing an increase of 1.7536847 in the log-odds of 

the object class. In contrast, the g
u  values of -0.439 and -0.954574 cause a decrease of -0.8509613 

and -1.1297399 in the log-odds of the object class, respectively. The feature ( )−0.19
r

g  exerts a 

significant positive influence, increasing the log-odds of the object class by 2.1578236. On the 

other hand, the features 
r

g  with a value of -1.07983 and 
i

r  with a value of -0.068 cause a decrease 

of -1.2428438 and -4.4628927 in the object class log-odds, respectively. The 
i

r  feature with a value 

of 0.062 makes a positive contribution of 0.5296718 to the log-odds of the object class, while at a 

i
r  value of 0.062 there is a significant increase of 4.9563270 in the log-odds of the object class. 

Changes to the 
z

i  feature also had a significant impact, with a value of -0.175 causing a decrease 

of -1.7246814, a value of 0.345 causing a decrease of -0.2032682, and a value of 0.645 causing a 

significant decrease of -5.8775901 in the object class log-odds. The model selected 14 of the 15 

terms and 4 of the 4 predictors included in the formula, with the termination criterion reaching 

a value (nk) of 21. The features considered important in the classification were g
u , 

r
g , 

i
r , and 

z
i

. The model evaluation results show Generalized Cross-Validation (GCV) of 0.1590279, Residual 

Sum of Squares (RSS) of 1422.677, Generalized R-Squared (GRSq) of 0.6422667, and R-Squared 

(RSq) of 0.6443308. Thus, this study reveals that the logistic regression model with the 

mentioned features can effectively classify the astronomical object classes in the SDSS training 

data. In this study, the visualization results generated from the combination plots provide deep 

insights into the developed statistical model. The figure displays the Coefficient Plot which 

visually depicts the influence of each feature on the astronomical object classes. The sky blue 

color of the bar chart indicates positive coefficient values, while black color indicates negative 

coefficient values. 
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Figure 10. Coefficient Plot Visualizations 

From the analysis of this plot, several conclusions can be drawn. For instance, the feature 

( )−0.19
r

g  has a significant positive impact on the class of objects, while the feature 

( ) − −0.068
i

r  has a relatively large negative influence. The constructed model successfully 

selects 14 out of 15 terms, with the four predictors included in the formula. The termination 

criterion used is achieving a value of (nk) equal to 21. Furthermore, the features considered 

important in the classification process are , ,   ,  and
g r i z

u g r i . 

 

Conclusion 

In conclusion, this research marks a substantial contribution to the comprehension of 

astronomical objects, such as quasars, stars, and white dwarfs, leveraging the comprehensive 

SDSS dataset comprising 12,884 observations. The dataset's richness in magnitude information 

across five filters, coupled with alpha-ray (ra) and delta (dec) coordinates, facilitates a profound 

statistical analysis. Examination of minimum and maximum magnitudes in each filter, along 

with alpha-ray (ra) and delta (dec) coordinates, reveals distinctive ranges of values. The 

identification of 77,429 quasar objects as qso1 across 15 dimensions enhances our understanding 

of dataset variations. 

The inclusion of observed variables like magnitude, redshift, and uncertainty measures 

(magnitude u and g) provides a wealth of information for further exploration. The classification 

of data into three classes—QSOs, MS + RG, and WD—combined with predictive modeling 

through non-linear regression and Lasso models yields noteworthy results. Notably, a non-

linear model with a polynomial degree of 3 demonstrates high accuracy in predicting object 

classes. 

The analysis of magnitude difference distribution, employing Gaussian kernel density 

plots, contributes additional insights into the physical properties of astronomical objects. The 

visualization of distributions and trends through these plots aids in identifying patterns crucial 

for understanding the inherent nature of these celestial entities. The validation of residuals via 

Q-Q plot visualization reinforces the reliability of MANOVA analysis results, affirming 

significant differences between object classes. Altogether, this research provides a 

comprehensive and effective exploration of astronomical objects, paving the way for enhanced 
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understanding and future investigations in the field. 
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