Optical Properties of Sodium-doped Carbon Dots Made of Urea and Trisodium Citrate

Authors

  • Isnaeni Isnaeni Research Center for Photonics, National Research and Innovation Agency
  • Vivi Purwandari Department of Chemistry, Faculty of Science and Information Technology, Sari Mutiara University
  • Permono Adi Putro Department of Physics, Faculty of Science, Universitas Mandiri
  • Hammam Magma Adiwidya Department of Chemistry, Bogor Agricultural University

DOI:

https://doi.org/10.11594/timeinphys.2023.v1i1p1-9

Keywords:

Carbon dots, Sodium, Microwave, Optical properties, Quantum Yield

Abstract

Carbon dots are very interesting carbon-based nanoparticles. Carbon dots have unique optical properties, especially luminescence properties upon light excitation. Improving optical quality is the challenge in carbon dots research. Doping is one of the methods to improve the quality of carbon dots. In this work, we used sodium, which is an active ion, as doping in the carbon dots. We studied the optical properties of sodium-doped carbon dots. We found that absorbance, FTIR, and photoluminescence spectra changed due additional surface energy level of carbon dots. Furthermore, the quantum yield of carbon dots improved significantly due to sodium doping. In addition, the phosphorescence of sodium-doped carbon dots was slightly longer. Electron behavior was also changed. In conclusion, sodium-doped carbon dots showed very good optical properties for further applications.

References

Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of carbon dots produced from biomass wastes. Nanomaterials. 2020;10(11):2316. doi:10.3390/nano10112316

Isnaeni, Herbani Y, Suliyanti MM. Concentration effect on optical properties of carbon dots at room temperature. Journal of Luminescence. 2018;198:215-219. doi:10.1016/j.jlumin.2018.02.012

Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol. 2019;17(1):92. doi:10.1186/s12951-019-0525-8

Wang X, Feng Y, Dong P, Huang J. A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem. 2019;7:671. doi:10.3389/fchem.2019.00671

Zhao B, Tan Z. Fluorescent carbon dots: Fantastic electroluminescent materials for light-emitting diodes. Advanced Science. 2021;8(7):2001977. doi:10.1002/advs.202001977

Li X, Fu Y, Zhao S, et al. Metal ions-doped carbon dots: Synthesis, properties, and applications. Chemical Engineering Journal. 2022;430:133101. doi:10.1016/j.cej.2021.133101

Li F, Yang D, Xu H. Non-metal-heteroatom-doped carbon dots: Synthesis and properties. Chemistry – A European Journal. 2019;25(5):1165-1176. doi:10.1002/chem.201802793

Ai L, Yang Y, Wang B, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin. 2021;66(8):839-856. doi:10.1016/j.scib.2020.12.015

Liu M. Optical properties of carbon dots: A review. NAT. 2020;1(1):1-12. doi:10.37256/nat.112020124.1-12

Zhu Z, Zhai Y, Li Z, et al. Red carbon dots: Optical property regulations and applications. Materials Today. 2019;30:52-79. doi:10.1016/j.mattod.2019.05.003

Kurdekar A, Chunduri LAA, Bulagonda EP, Haleyurgirisetty MK, Kamisetti V, Hewlett IK. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid Nanofluid. 2016;20(7):99. doi:10.1007/s10404-016-1763-9

Karaman C. Orange peel derived-nitrogen and sulfur co-doped carbon dots: A nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis. 2021;33(5):1356-1369. doi:10.1002/elan.202100018

Atchudan R, Edison TNJI, Perumal S, Muthuchamy N, Lee YR. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel. 2020;275:117821. doi:10.1016/j.fuel.2020.117821

Liu Y, Huang H, Cao W, Mao B, Liu Y, Kang Z. Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front. 2020;4(6):1586-1613. doi:10.1039/D0QM00090F

Lin Z, Yang J, Zeng Q, Tie S, Huang R, Lan S. Deep blue photoluminescence and optical gain from sodium-doped carbon dots. Journal of Luminescence. 2022;246:118856. doi:10.1016/j.jlumin.2022.118856

Velusamy J, Ramos-Ortiz G. Na-doped carbon nanodots: shed light on the concentration modulated photoluminescence and two-photon absorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;634:127993. doi:10.1016/j.colsurfa.2021.127993

Hu J, Zhang C yang. Simple and accurate quantification of quantum yield at the single-molecule/particle level. Anal Chem. 2013;85(4):2000-2004. doi:10.1021/ac3036487

Fischer M, Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chemical Physics Letters. 1996;260(1-2):115-118. doi:10.1016/0009-2614(96)00838-X

Li Y, Natakorn S, Chen Y, et al. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front Phys. 2020;8:576862. doi:10.3389/fphy.2020.576862

Yi Z, Li X, Zhang H, et al. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta. 2021;222:121663. doi:10.1016/j.talanta.2020.121663

Xu D, Li M, Xu H, Yu J, Wang Y, Zhang P. N,S-doped carbon quantum dots as a fluorescent probe for palladium(II) ions via Förster resonance energy transfer. Results in Chemistry. 2021;3:100179. doi:10.1016/j.rechem.2021.100179

Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK. Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale. 2019;11(35):16571-16581. doi:10.1039/C9NR05345J

Downloads

Published

2023-02-26

How to Cite

Isnaeni, I., Purwandari, V., Putro, P. A., & Adiwidya, H. M. (2023). Optical Properties of Sodium-doped Carbon Dots Made of Urea and Trisodium Citrate. TIME in Physics, 1(1), 1–9. https://doi.org/10.11594/timeinphys.2023.v1i1p1-9

Issue

Section

Articles