Structure and Morphology of ZnO Nanoparticles Prepared by Sonochemical Method
DOI:
https://doi.org/10.11594/timeinphys.2023.v1i2p51-58Kata Kunci:
SEM, Ultrasonic, XRD, ZnOAbstrak
Ultrasonic wave has been utilized to synthesize the ZnO nanoparticle. ZnO is formed from a mixture of zinc acetate (ZnAc) and Natrium Hydroxide (NaOH) with various concentrations of ZnAc 0.5 M (ZnO 1:1) and 1.5 M (ZnO 3:1) and the concentration of NaOH remained at a concentration of 0.5 M. The Structure and crystal size were characterized using X-ray Diffraction (XRD), while its morphology was examined by Scanning Electron Microscopy (SEM). The results show that ZnO 1:1 has a higher (stronger) diffraction intensity than the ZnO 3:1. The crystallite size of ZnO 1:1 averaged 30.57 ± 4.31 nm while the ZnO 3:1 had an average crystallite size of 20.25 ± 7.12 nm. From the size of the crystallites ZnO particles that are formed include nanoparticles. ZnO 1:1 SEM image shows the shape of microrods in the 1:1 ZnO sample while in the 3:1 ZnO sample no microrods are formed. Based on the morphology, the 1:1 ZnO sample has an average size of 230 nm and is larger than the 3:1 ZnO sample which has an average size of 50 nm.
Referensi
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Bueno RF, Rosa DS. Questioning ZnO, Ag, and Ag/ZnO nanoparticles as antimicrobial agents for textiles: Do they guarantee total protection against bacteria and SARS-CoV-2? J Photochem Photobiol B Biol. 2022;234(August):112538. doi:10.1016/j.jphotobiol.2022.112538
Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015;26(5):1294-1299. doi:10.1016/j.apt.2015.07.001
Saravanakumar K, Sakthivel P, Sankaranarayanan RK. Influence of Sn4+ ion on band gap tailoring, optical, structural and dielectric behaviors of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;267:120487. doi:10.1016/j.saa.2021.120487
Veerabhadraiah SR, Maji S, Panneerselvam A. Solvent influence on the formation of ZnO nanoparticles by sonochemical technique and evaluation of UV-blocking efficiency. J Cryst Growth. 2022;579(July 2021):126430. doi:10.1016/j.jcrysgro.2021.126430
Silva DJ, Barbosa RFS, Souza AG, Ferreira RR, Camani PH, Rosa DS. Morphological, UV blocking, and antimicrobial features of multifunctional cotton fibers coated with ZnO/Cu via sonochemistry. Mater Chem Phys. 2022;286(January):126210. doi:10.1016/j.matchemphys.2022.126210
Santibenchakul S, Sirijaturaporn P, Mekprasart W, Pechrapa W. Ga-doped ZnO nanoparticles synthesized by sonochemical-assisted process. Mater Today Proc. 2018;5(6):13865-13869. doi:10.1016/j.matpr.2018.02.030
Potdar SB, Praveen BVS, Sonawane SH. Sonochemical approach for synthesis of zinc oxide-poly methyl methacrylate hybrid nanoparticles and its application in corrosion inhibition. Ultrason Sonochem. 2020;68(May):105200. doi:10.1016/j.ultsonch.2020.105200
Khataee A, Karimi A, Zarei M, Joo SW. Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application. Ultrason Sonochem. 2020;67:102822. doi:10.1016/j.ultsonch.2015.03.016
Patil PP, Bohara RA, Meshram J V., Nanaware SG, Pawar SH. Hybrid chitosan-ZnO nanoparticles coated with a sonochemical technique on silk fibroin-PVA composite film: A synergistic antibacterial activity. Int J Biol Macromol. 2019;122:1305-1312. doi:10.1016/j.ijbiomac.2018.09.090
Khataee A, Karimi A, Arefi-Oskoui S, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason Sonochem. 2015;22:371-381. doi:10.1016/j.ultsonch.2014.05.023
Khataee A, Soltani RDC, Karimi A, Joo SW. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason Sonochem. 2015;23:219-230. doi:10.1016/j.ultsonch.2014.08.023
Gupta A, Srivastava R. Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications. Ultrason Sonochem. 2019;52(December 2018):414-427. doi:10.1016/j.ultsonch.2018.12.020
Hozyen HF, Ibrahim ES, Khairy EA, El-Dek SI. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet World. 2019;12(8):1225-1232. doi:10.14202/vetworld.2019.1225-1232
Ahmed W, Chowdhury ZZ, Kazi SN, Johan M, Akram N, Oon CS. Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. Int Commun Heat Mass Transf. 2020;114(April):104591. doi:10.1016/j.icheatmasstransfer.2020.104591
Cai M, Shui A, Wang X, He C, Qian J, Du B. A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J Alloys Compd. 2020;842:155638. doi:10.1016/j.jallcom.2020.155638
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Akhiruddin Maddu, Zetria Zikri, Irzaman

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Authors who publish with TIME in Physics (Journal for Theoretical, Instrumentation, Material-Molecular, and Education Physics) agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.