A Comparison of Anfis and Fuzzy Classifiers for Object Tracking Based on RGB Color Using Camera Vision
DOI:
https://doi.org/10.11594/timeinphys.2023.v1i2p85-91Keywords:
Image Processing, Fuzzy, Anfis, Image Substracting, Region PropertiesAbstract
Image processing technology has a wide range of applications, such as in the medical, military, surveillance, and robotics industries. Analyzing objects in images is crucial when it comes to image processing. This study focuses on image processing to track objects of red, green, and blue (RGB) colors through the utilization of a camera. There are two research schemes: image processing and data classification. The data classification method used is the fuzzy and adaptive neuro-fuzzy inference system (ANFIS). The methods of image subtracting and region properties are commonly utilized for image processing. Based on the classification data results, the fuzzy logic classification demonstrated a higher accuracy rate of 86% when compared to Anfis' 65%. This was observed when both classification models were tested using a random sample. The value of Anfis is small due to the limited size of the training data used. As a result, it is recommended to use a fuzzy classifier for object color tracking for good performance.
References
Hani Hunud A. K., Yasir Mohd M. (2013). Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV. IOP Conf. Ser.:Mater. Sci. Eng. 53. doi: 10.1088/1757-899X/53/1/012086
Yunus C., Mahmut A., Mahit G. (2017) Color based moving object tracking with an active camera using motion information. IEEE Explore. doi:10.1109/IDAP.2017.8090332
Ali Basrah P., Zhfranul N., Muhammad A., Hastuti, Hamdani, Dwiprima E. M. (2021). Object Detection with A Webcam Using the Python Programming Language. Journal of Applied Engineering and Technological Science. Vol 2(2), 103-111.
Mai Thanh N. T., Sanghoon K. (2017). Parallel implementation of color-based particle filter for object tracking in embedded systems. Human-centric Computing and Information Sciences volume. doi : 10.1186/s13673-016-0082-1
Goli A., Hossein A., Mehrbakhsh N., Tarik A. R., Omed H., Nahla A., Azida Z. (2019). Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification. Biocybern Biomed Eng.39(4): 937–955. doi: 10.1016/j.bbe.2019.09.004
P. Thirumurugan, P. Shanthakumar. (2016). Brain tumor detection and diagnosis using ANFIS classifier. IMA.Vol. 26(2), doi: https://doi.org/10.1002/ima.22170
Suhendra, M. A., Parlaungan, T. F., & Sumardi, T. (2023). Voice Recognition as a Mobile Robot Controller with the Adaptive Neuro-Fuzzy Inference System Method. TIME in Physics, 1(1), 43–49. https://doi.org/10.11594/timeinphys.2023.v1i1p43-49
A. Turnip, M. Agung S., and Mada Sanjaya W. S. (2015). Brain-Controlled Wheelchair based EEG SSVEP Signals Classified by Nonlinear Adaptive Filter. In Proc. 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, pp. 905-908.
A. Turnip, M. Faizal A., M. Agung S., and Dwi Esti K. (2017). Lie Detection Based EEG-P300 Signal Classified by ANFIS Method, Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 9, pp. 107-110.
T. V. Padmavathy, M. N. Vimalkumar, D. S. Bhargava. (2018). Adaptive clustering-based breast cancer detection with ANFIS classifier using mammographic images. Cluster Computing. doi: https://doi.org/10.1007/s10586-018-2160-9
Eka A., Wiwien H., Zuli B. (2013) Implementasi Metode Image Subtracting dan Metode Regionprops untuk Mendeteksi Jumlah Objek Berwarna RGB pada File Video. Jurnal Teknologi Informasi DINAMIK. Volume 18, No.2, Juli 2013: 91-100
Shahbe M. D., Qussay A. S. (2004). Image Subtraction for Real Time Moving Object Extraction. International Conference on Computer Graphics, Imaging and Visualization (CGIV’04), doi: http://dx.doi.org/10.1109/CGIV.2004.1323958
Ahmed R. N., Ahmad T. A., Amjad J. H., Ammar K. A. Ibraheem K. I. (2021). Intelligent Fault Detection and Identification Approach for Analog Electronic Circuits Based on Fuzzy Logic Classifier. Electronics,10(23), 2888; https://doi.org/10.3390/electronics10232888
Afshin S., Navid G., Marjane K., Parisa M., Roohallah A., Assef Z., Abbas K., Abdulhamit S., U. Rajendra A., J. Manuel G. (2022). Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies. Biomedical Signal Processing and Control, 73, 103417. doi: https://doi.org/10.1016/j.bspc.2021.103417
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iqbal Robiyana, Timbo Faritcan Parlaungan, Sarifudin, Muhamad Agung Suhendra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with TIME in Physics (Journal for Theoretical, Instrumentation, Material-Molecular, and Education Physics) agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.