Structure and Morphology of ZnO Nanoparticles Prepared by Sonochemical Method

Authors

  • Akhiruddin Maddu Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor 16680 Indonesia
  • Zetria Zikri Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor 16680 Indonesia
  • Irzaman Irzaman Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor 16680 Indonesia

DOI:

https://doi.org/10.11594/timeinphys.2023.v1i2p51-58

Keywords:

SEM, Ultrasonic, XRD, ZnO

Abstract

Ultrasonic wave has been utilized to synthesize the ZnO nanoparticle. ZnO is formed from a mixture of zinc acetate (ZnAc) and Natrium Hydroxide (NaOH) with various concentrations of ZnAc 0.5 M (ZnO 1:1) and 1.5 M (ZnO 3:1) and the concentration of NaOH remained at a concentration of 0.5 M. The Structure and crystal size were characterized using X-ray Diffraction (XRD), while its morphology was examined by Scanning Electron Microscopy (SEM). The results show that ZnO 1:1 has a higher (stronger) diffraction intensity than the ZnO 3:1. The crystallite size of ZnO 1:1 averaged 30.57 ± 4.31 nm while the ZnO 3:1 had an average crystallite size of 20.25 ± 7.12 nm. From the size of the crystallites ZnO particles that are formed include nanoparticles. ZnO 1:1 SEM image shows the shape of microrods in the 1:1 ZnO sample while in the 3:1 ZnO sample no microrods are formed. Based on the morphology, the 1:1 ZnO sample has an average size of 230 nm and is larger than the 3:1 ZnO sample which has an average size of 50 nm.

References

da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Bueno RF, Rosa DS. Questioning ZnO, Ag, and Ag/ZnO nanoparticles as antimicrobial agents for textiles: Do they guarantee total protection against bacteria and SARS-CoV-2? J Photochem Photobiol B Biol. 2022;234(August):112538. doi:10.1016/j.jphotobiol.2022.112538

Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015;26(5):1294-1299. doi:10.1016/j.apt.2015.07.001

Saravanakumar K, Sakthivel P, Sankaranarayanan RK. Influence of Sn4+ ion on band gap tailoring, optical, structural and dielectric behaviors of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;267:120487. doi:10.1016/j.saa.2021.120487

Veerabhadraiah SR, Maji S, Panneerselvam A. Solvent influence on the formation of ZnO nanoparticles by sonochemical technique and evaluation of UV-blocking efficiency. J Cryst Growth. 2022;579(July 2021):126430. doi:10.1016/j.jcrysgro.2021.126430

Silva DJ, Barbosa RFS, Souza AG, Ferreira RR, Camani PH, Rosa DS. Morphological, UV blocking, and antimicrobial features of multifunctional cotton fibers coated with ZnO/Cu via sonochemistry. Mater Chem Phys. 2022;286(January):126210. doi:10.1016/j.matchemphys.2022.126210

Santibenchakul S, Sirijaturaporn P, Mekprasart W, Pechrapa W. Ga-doped ZnO nanoparticles synthesized by sonochemical-assisted process. Mater Today Proc. 2018;5(6):13865-13869. doi:10.1016/j.matpr.2018.02.030

Potdar SB, Praveen BVS, Sonawane SH. Sonochemical approach for synthesis of zinc oxide-poly methyl methacrylate hybrid nanoparticles and its application in corrosion inhibition. Ultrason Sonochem. 2020;68(May):105200. doi:10.1016/j.ultsonch.2020.105200

Khataee A, Karimi A, Zarei M, Joo SW. Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application. Ultrason Sonochem. 2020;67:102822. doi:10.1016/j.ultsonch.2015.03.016

Patil PP, Bohara RA, Meshram J V., Nanaware SG, Pawar SH. Hybrid chitosan-ZnO nanoparticles coated with a sonochemical technique on silk fibroin-PVA composite film: A synergistic antibacterial activity. Int J Biol Macromol. 2019;122:1305-1312. doi:10.1016/j.ijbiomac.2018.09.090

Khataee A, Karimi A, Arefi-Oskoui S, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason Sonochem. 2015;22:371-381. doi:10.1016/j.ultsonch.2014.05.023

Khataee A, Soltani RDC, Karimi A, Joo SW. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason Sonochem. 2015;23:219-230. doi:10.1016/j.ultsonch.2014.08.023

Gupta A, Srivastava R. Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications. Ultrason Sonochem. 2019;52(December 2018):414-427. doi:10.1016/j.ultsonch.2018.12.020

Hozyen HF, Ibrahim ES, Khairy EA, El-Dek SI. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet World. 2019;12(8):1225-1232. doi:10.14202/vetworld.2019.1225-1232

Ahmed W, Chowdhury ZZ, Kazi SN, Johan M, Akram N, Oon CS. Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. Int Commun Heat Mass Transf. 2020;114(April):104591. doi:10.1016/j.icheatmasstransfer.2020.104591

Cai M, Shui A, Wang X, He C, Qian J, Du B. A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J Alloys Compd. 2020;842:155638. doi:10.1016/j.jallcom.2020.155638

Downloads

Published

2023-07-10

How to Cite

Maddu, A., Zetria Zikri, & Irzaman, I. (2023). Structure and Morphology of ZnO Nanoparticles Prepared by Sonochemical Method. TIME in Physics, 1(2), 51–58. https://doi.org/10.11594/timeinphys.2023.v1i2p51-58

Issue

Section

Articles